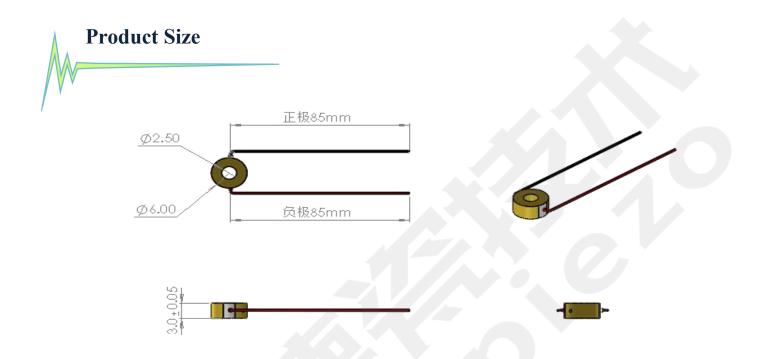


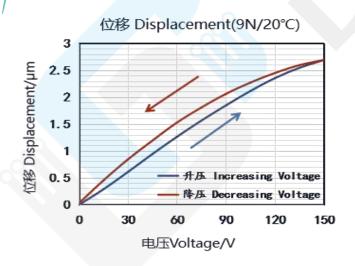
The **DCRG3-062503** annular piezoelectric disc has an outer diameter of 6.0 mm and an inner diameter of 2.5 mm. It is composed of a series of laminated piezoelectric ceramic layers, each with screen-printed electrodes. The layers are bonded into a single unit through warm isostatic pressing. It can achieve a displacement of up to 2.7 μ m. The red wire of the electrode serves as the positive terminal (+), and the black wire is the negative terminal (-).

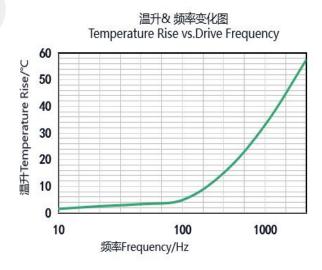
DCRG3-0625203

Performance Parameters


Drive Voltage Range	-30~150 V	Capacitance	195nF ± 15%
Displacement (Free Stroke) at 150 V	$2.7~\mu m \pm 15\%$	Dissipation Factor	<2.0%
Hysteresis	<15%	Resonant Frequency	475kHZ
Stiffness	340 N/μm	Blocking Force at 150 V	930N
Curie Temperature	230 °C	Operating Temperature	-25 ~ 130 °C
Product Size	Outside diameter : 6.0mm	Outer Dimensions	Outside diameter : 6.3 ± 0.1 mm
	Inside diameter : 2.5mm		Inside diameter : 2.5 ± 0.1 mm
	thickness : 3.0mm		thickness : 3.0 ± 0.05 mm

- All specifications are quoted at 25°C, unless otherwise stated.
- The displacement may vary slightly for different loads, and the maximum displacement


occurs when used with the recommended load.



Performance Curve

• These temperature rises were measured after applying a sine-wave drive voltage ranging from 0 to 150V at the specified frequency for 10 minutes.

Guangdong DCpiezo Technology Co., Ltd.

Matters Needing Attention

1. Storage Conditions & Precautions:

Temperature: <50 °C, Humidity: <40%Rh. Avoid impact and compression. Store in vacuum-sealed bags for long-term preservation. When not in use, connect to a resistive discharge (\geq 100k Ω) or short-circuit (for low-capacitance ceramics).

2. Operating Conditions & Precautions:

Temperature: Maximum operating temperature $\leq 130^{\circ}$ C (preferably $< 60^{\circ}$ C). Add heat dissipation measures if temperature exceeds 80° C.

Humidity: <50%Rh. In high-humidity environments, preheat at low voltage before use to avoid creepage discharge.

Dust Avoidance: Dust adhesion on ceramic surfaces may reduce insulation resistance.

Clearance: Maintain a gap >1.6mm between ceramics and other conductors.

Safety: Do not immerse piezoelectric stacks in organic solvents or expose to flammable gases/liquids.

3. Assembly Precautions:

Polarity: Red wire = positive (+), black wire = negative (-). Reverse polarity may cause mechanical failure.

Handling: Handle with care to avoid impact. Wear gloves to prevent oil contamination.

Fit Tolerance: Assemble with clearance fit first, then tighten. Avoid interference fit to prevent ceramic compression.

Electrostatic Protection: Maintain >1.6mm gap between ceramics and metal parts to avoid static discharge.

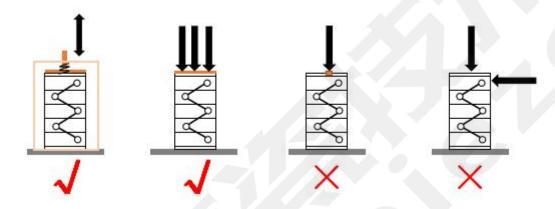
Adhesive Bonding: Ensure flat bonding surfaces and remove excess glue to minimize contamination.

Soldering: Limit contact time under high temperature to <1 second to protect ceramics and coatings.

High-Temperature Assembly: Control temperature <120 $^{\circ}$ C to prevent depolarization, adhesive failure, or coating damage.

4. Preload Instructions:

Load Application: Apply external load to the center of the stack or distribute uniformly on the Guangdong DCpiezo Technology Co., Ltd.



mounting surface. Ensure contact surfaces are flat and smooth.

Force Direction: Piezoelectric stacks can only withstand axial forces. Shear or torsional forces may cause mechanical failure.

Preload Force: Preload should not exceed 40% of maximum blocking force, and its direction must align with the motion axis to minimize shear stress.

